Efficient Sequential Monte Carlo Using Interpolation
نویسنده
چکیده
A limitation common to all sequential Monte Carlo algorithms is the computational demand of accurately describing an arbitrary distribution, which may preclude real-time implementation for some systems. We propose using interpolation to construct a high accuracy approximation to the importance density. The surrogate density can then be efficiently evaluated in place of sampling the true importance density, allowing for the propagation of a large number of particles at reduced cost. Numerical examples are given demonstrating the utility of the approach.
منابع مشابه
A Spectral Monte Carlo Method for the Poisson Equation. a Spectral Monte Carlo Method for the Poisson Equation *
Using a sequential Monte Carlo algorithm, we compute a spectral approximation of the solution of the Poisson equation in dimension 1 and 2. The Feyman-Kac computation of the pointwise solution is achieved using either an integral representation or a modified walk on spheres method. The variances decrease geometrically with the number of steps. A global solution is obtained, accurate up to the i...
متن کاملNumerical Issues in Threshold Autoregressive Modeling of Time Series
This paper analyses the contribution of various numerical approaches in making the estimation of threshold autoregressive time series more efficient. It relies on the computational advantages of QR factorizations and proposes Givens transformations to update these factors for sequential LS problems. By showing that the residual sum of squares is a continuous rational function over threshold int...
متن کاملA spectral Monte Carlo method for the Poisson equation
Using a sequential Monte Carlo algorithm, we compute a spectral approximation of the solution of the Poisson equation in dimension 1 and 2. The Feyman-Kac computation of the pointwise solution is achieved using either an integral representation or a modified walk on spheres method. The variances decrease geometrically with the number of steps. A global solution is obtained, accurate up to the i...
متن کاملGeostatistical Seismic Inversion Using Well Log Constraints
Information about reservoir properties usually comes from two sources: seismic data and well logs. The former provide an indirect, low resolution image of rock velocity and density. The latter provide direct, high resolution (but laterally sparse) sampling of these and other rock parameters. An important problem in reservoir characterization is how best to combine these data sets, allowing the ...
متن کاملEvaluating Quasi-Monte Carlo (QMC) algorithms in blocks decomposition of de-trended
The length of equal minimal and maximal blocks has eected on logarithm-scale logarithm against sequential function on variance and bias of de-trended uctuation analysis, by using Quasi Monte Carlo(QMC) simulation and Cholesky decompositions, minimal block couple and maximal are founded which are minimum the summation of mean error square in Horest power.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009